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Abstract—Obtaining a controlled invariant set is crucial for
safety-critical control with control barrier functions (CBFs)
but is non-trivial for complex nonlinear systems and con-
straints. Backup control barrier functions allow such sets to
be constructed online in a computationally tractable manner
by examining the evolution (or flow) of the system under a
known backup control law. However, for systems with un-
modeled disturbances, this flow cannot be directly computed,
making the current methods inadequate for assuring safety
in these scenarios. To address this gap, we leverage bounds
on the nominal and disturbed flow to compute a forward
invariant set online by ensuring safety of an expanding norm
ball tube centered around the nominal system evolution. We
prove that this set results in robust control constraints which
guarantee safety of the disturbed system via our Disturbance-
Robust Backup Control Barrier Function (DR-bCBF) solution.
The efficacy of the proposed framework is demonstrated in
simulation, applied to a double integrator problem and a rigid
body spacecraft rotation problem with rate constraints.

I. INTRODUCTION

Control barrier functions (CBFs) [1], are a popular ap-
proach to assuring safety of autonomous systems by encoding
safety into existing controllers and providing sufficient condi-
tions for forward invariance of safe sets. However, obtaining
safe sets for which every state has a safe control action (a.k.a.
controlled invariant sets) is difficult for high-dimensional
systems, especially when considering input bounds. Addi-
tionally, dynamics models are seldom perfect. In this letter
we seek to solve both of these problems simultaneously.

To address the problem of controlled invariance, we adapt
the backup set method [2]–[4] based on online backward
reachability. This method establishes a controlled invariant
safe set implicitly using the flow of the system under a
prescribed backup control law. This approach is computation-
ally tractable even for complex systems. For affine nonlinear
systems, this technique generates linear control constraints
which can be used to efficiently solve for point-wise optimal
control signals for an arbitrary primary controller.

The second problem we address is that of model uncer-
tainty, which has been studied extensively in the CBF litera-
ture. Robust methods [5]–[8] typically rely on accounting
for worst-case disturbances through an upper disturbance
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Fig. 1. Depiction of the proposed disturbance-robust safety-critical control
framework. CI represents a forward invariant subset of an unknown con-
trolled invariant set CD and guarantees safety of the disturbed system.

bound, and these methods can be made less conservative
via disturbance estimation [9]. The notion of input-to-state
safety, defined first in [10] and extended for CBFs in [11],
provides a technique for handling input disturbances and has
been successfully applied in multiple scenarios [12], [13].
Adaptive CBF methods have been shown to assure safety in
the presence of parametric dynamics uncertainty [14], [15]
and a robust adaptive CBF extension can reduce conservatism
and closed-loop chattering [16]. Learning [17], [18] and data-
driven [19]–[21] approaches have also been developed to
account for uncertainty in dynamics, state, or both. Lastly, for
mixed-monotone systems their decomposable structure can
be exploited to produce robustly forward invariant sets [22].
While these approaches present viable solutions to addressing
model uncertainty, they assume that a controlled invariant
safe set can be found explicitly—a strong assumption for
many systems and safety constraints. Works [23] and [24] do
not make this assumption, but the former is specific to mixed-
monotone systems, and the latter assumes perfect dynamics
knowledge and bounded measurement error.

The main contribution of this work is a novel approach
to address controlled invariance and dynamics disturbances
simultaneously through the formulation of disturbance-robust
backup CBFs. Unlike existing works, a controlled invariant
set describing safety is not assumed to be known a priori,
but is instead constructed online. We first derive forward
invariance conditions for a subset inside a controlled invariant
set of the disturbed system (displayed in Figure 1). Then we
robustify these conditions and integrate them with existing
controllers via a quadratic program. The proposed framework
guarantees safety for a broad class of nonlinear systems with
limited control authority even in the presence of unknown,
bounded disturbances. We demonstrate the effectiveness of
the approach using two numerical simulations: an illustrative
double integrator system and a spacecraft rotation example.



II. PRELIMINARIES

A. Control Barrier Functions

Consider a nonlinear control affine system of the form

ẋ = f(x) + g(x)u, x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, (1)

where f : X → Rn and g : X → Rn×m are Lipschitz con-
tinuous functions. It is assumed that U is an m-dimensional
convex polytope. For an initial condition x(0) = x0 ∈ X
if u is given by a locally Lipschitz feedback controller
k : X → U , u = k(x), the closed-loop system (1) has a
unique solution ϕn(t,x0) over an interval of existence.

In the context of this work, safety is defined by member-
ship to set CS. Safe controllers are ones that render this safe
set forward invariant. A set C ⊂ Rn is forward invariant
along (1) if x0 ∈ C =⇒ ϕn(t,x0) ∈ C, for all t > 0.
Now, consider the safe set CS as the 0-superlevel set of
a continuously differentiable function h : X → R with
CS ≜ {x ∈ X : h(x) ≥ 0}, where the gradient of h along the
boundary of CS remains nonzero. A function h : X → R is
a CBF [1] for (1) on CS if there exists a class-K∞ function1

α such that for all x ∈ CS
sup
u∈U

ḣ(x,u) ≜ ∇h(x)f(x)︸ ︷︷ ︸
Lfh(x)

+∇h(x)g(x)︸ ︷︷ ︸
Lgh(x)

u ≥ −α(h(x)),

where L(·)h is the Lie derivative of h along function (·).
Theorem 1 ( [1]). If h is a CBF for (1) on CS, then any
locally Lipschitz controller k : X → U , u = k(x) satisfying

Lfh(x) + Lgh(x)u ≥ −α(h(x)) (2)

for all x ∈ CS renders the set CS forward invariant.

For an arbitrary primary controller, up ∈ U , it is possible
to ensure the safety of (1) by solving the following point-wise
optimization problem for the safe control, usafe:

usafe = argmin
u∈U

1

2
∥up − u∥2 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)).

A key challenge is obtaining an explicit representation of
such a function h where a safe control signal satisfying (2)
can always be found. Depending on the safe set this may
be difficult or impossible, especially for high dimensional
systems. This therefore motivates the use of an extension of
CBFs known as backup CBFs.

B. Implicitly Defined Controlled Invariant Sets

First introduced in [2] and expanded upon in [3], the
backup CBF approach relies on obtaining an implicitly
defined controlled invariant set. A set C ⊂ Rn is controlled
invariant if there exists a controller k : X → U , u = k(x)
which renders C forward invariant for (1).

1α : R≥0 → R≥0 is a class-K∞ function if it is continuous, α(0) = 0
and limx→∞α(x) = ∞.

To construct an implicit controlled invariant set, first
assume that we have defined a set CS describing our state
constraints, which is not necessarily controlled invariant.
Now suppose that there exists a set within CS which we call
a backup set, CB, such that CB ⊂ CS. This set is defined
similar to CS with a continuously differentiable function hb,
it is known to be controlled invariant, and it is made forward
invariant by a backup control law defined by ub : X → U .
The closed-loop system under ub is denoted as

fcl(x) ≜ f(x) + g(x)ub(x). (3)

It is assumed that for any x ∈ X there exists a unique
solution ϕn

b : [0, T ]×X → X which satisfies:

ϕ̇n
b(τ,x) = fcl(ϕ

n
b(τ,x)), ϕn

b(0,x) = x. (4)

The solution is the flow of the system over the interval [0, T ]
for T ∈ R>0 starting at state x under the backup control
law ub. To obtain an implicitly defined controlled invariant
set, CBI, satisfying CB ⊆ CBI ⊆ CS, one must ensure that the
trajectory of the system under ub(x) remains in CS over a
finite time horizon, and that the final point in the trajectory
lies within the backup set CB. Therefore CBI is defined as

CBI ≜

{
x ∈ X

∣∣∣∣ h(ϕn
b(τ,x)) ≥ 0,∀τ ∈ [0, T ],
hb(ϕ

n
b(T,x)) ≥ 0

}
. (5)

The sufficient condition for forward invariance of CBI, and
thus safety with respect to CS, is then

∇h(ϕn
b(τ,x))Φ

n
b(τ,x)ẋ ≥ −α(h(ϕn

b(τ,x))), (6a)
∇hb(ϕ

n
b(T,x))Φ

n
b(T,x)ẋ ≥ −αb(hb(ϕ

n
b(T,x))), (6b)

for all τ ∈ [0, T ] and class-K∞ functions α and αb. Here,
ẋ = f(x) + g(x)u and Φn

b(τ,x) ≜ ∂ϕn
b(τ,x)/∂x is the

sensitivity matrix, or state-transition matrix (STM), which
captures the sensitivity of the flow to perturbations in the
initial condition x. The STM is the solution to

Φ̇
n

b(τ,x) = Fcl(ϕ
n
b(τ,x))Φ

n
b(τ,x), Φn

b(0,x) = I, (7)

where Fcl is the Jacobian of the closed-loop backup dynamics
(3) evaluated at ϕn

b(τ,x) and I is the n×n identity matrix.
Because the inequality in (6a) represents an infinite number

of constraints, in practice these are discretized and enforced
at discrete times along the flow. To ensure safety between
sample points, (6a) is tightened via a constant ε∆ [4, Thm. 3]:

ε∆ ≥ ∆

2
Lh sup

x∈CS

∥fcl(x)∥ , (8)

where ∆ ∈ R>0 is a discretization time step satisfying
T/∆ ∈ N, Lh ∈ R>0 is the Lipschitz constant of h with
respect to the Euclidean norm and supx∈CS

∥fcl(x)∥ is the
maximal velocity of the backup vector field.

As in (CBF-QP), the safety of (1) can be enforced for
a primary controller, up ∈ U , by solving an optimization
problem for the safe control with constraints (6), where the
right-hand side of (6a) is replaced by −α(h(ϕn

b(τ,x))−ε∆).



III. DISTURBANCE ROBUSTNESS

While the standard backup set method reviewed in Sec-
tion II-B can guarantee safety for a system in which the
dynamics are perfectly known, in practice there are always
unmodeled parameters or external disturbances which perturb
the dynamics. Therefore, it is desirable to leverage the ad-
vantages offered by the backup CBF approach, for dynamics
with process disturbances. As such, consider the system

ẋ = f(x) + g(x)u+ dx, (9)

where dx ∈ Dx ⊆ Rn is an unknown additive process dis-
turbance and there exists a constant ξ ∈ R>0 such that
∥dx∥ ≤ ξ. For an initial condition x(0) = x0 ∈ X and a
locally Lipschitz controller u = k(x), if dx is piecewise
continuous in time, the closed-loop system (9) has a unique
solution ϕd(t,x0) over an interval of existence.

We assume that a backup control law ub can be obtained
which renders a backup set CB inside CS robustly forward
invariant. This is made more precise below.

Assumption 1. The backup controller ub renders the backup
set CB forward invariant along (9) for any disturbance dx

which satisfies ∥dx∥ ≤ ξ.

Backup sets are often defined by a level set of a quadratic
Lyapunov function based on the linearized dynamics about a
stabilizable equilibrium point [3], [25], and a simple feedback
controller such as a linear quadratic regulator can be used
to render this set forward invariant. Techniques to robustify
such quadratic Lyapunov functions have been studied in
the literature [5], [26, Ch. 13.1], [27, Ch. 3]. While this
robustification may result in a smaller backup set, this set
is expanded to generate a larger controlled invariant set.

Next we define two separate flows: the nominal and the
disturbed backup flow. The nominal backup flow ϕn

b(τ,x)
satisfies (4) under the robust control law ub, while the
disturbed backup flow, denoted ϕd

b(τ,x), is the solution to

ϕ̇d
b(τ,x) = fcl(ϕ

d
b(τ,x)) + dx, ϕd

b(0,x) = x. (10)

Again, it is assumed that for any x ∈ X there exists a unique
solution ϕd

b : [0, T ]×X → X to (10). Consider CD ⊆ CS

CD ≜

{
x ∈ X

∣∣∣∣ h(ϕd
b(τ,x)) ≥ 0,∀τ ∈ [0, T ],

hb(ϕ
d
b(T,x)) ≥ 0

}
. (11)

We are interested in forward invariance conditions for CD, but
since the disturbance is unknown, we will instead derive for-
ward invariance conditions for a set which over-approximates
the disturbed flow. Consider a new set, CI, defined by

CI ≜
{
x ∈ X

∣∣∣∣ h(ϕn
b(τ,x)) ≥ ϵτ ,∀τ ∈ [0, T ],
hb(ϕ

n
b(T,x)) ≥ ϵb

}
. (12)

The set is entirely governed by the nominal trajectory and
additional tightening terms ϵτ and ϵb. For judiciously chosen
values of ϵτ and ϵb, we show that CI is a subset of CD.

Lemma 1. Let Lh and Lhb
be the Lipschitz constants of h

and hb, respectively, and let δmax(τ) be a norm bound on the
deviation between ϕn

b(τ,x) and ϕd
b(τ,x) at time τ ∈ [0, T ]:∥∥∥ϕn

b(τ,x)− ϕd
b(τ,x)

∥∥∥ ≤ δmax(τ), (13)

for all x ∈ CS. If ϵτ ≥ Lhδmax(τ) holds for all τ ∈ [0, T ]
and ϵb ≥ Lhb

δmax(T ) also holds, then CI ⊆ CD.

Proof. Consider any state x ∈ CI. Membership to CI implies
that h(ϕn

b(τ,x)) ≥ ϵτ ≥ Lhδmax(τ). Hence it follows that

h(ϕd
b(τ,x)) = h(ϕn

b(τ,x))−
(
h(ϕn

b(τ,x))− h(ϕd
b(τ,x))

)
≥ Lhδmax(τ)−

∣∣h(ϕn
b(τ,x))− h(ϕd

b(τ,x))
∣∣.

By Lipschitz continuity of the constraint function h

|h(ϕn
b(τ,x))− h(ϕd

b(τ,x))|
≤ Lh

∥∥∥ϕn
b(τ,x)− ϕd

b(τ,x)
∥∥∥ ≤ Lhδmax(τ),

we obtain h(ϕd
b(τ,x)) ≥ 0 for any x ∈ CI. Similar logic can

be applied to the constraint on the reachability of the backup
set. For any x ∈ CI, the nominal backup trajectory from x
satisfies hb(ϕ

n
b(T,x)) ≥ ϵb ≥ Lhb

δmax(T ), and we have

|hb(ϕ
n
b(T,x))− hb(ϕ

d
b(T,x))| ≤ Lhb

δmax(T ).

These guarantee that hb(ϕ
d
b(T,x)) ≥ 0. Thus, all the

functions which define CD are nonnegative, meaning that
x ∈ CD for all x ∈ CI, and so CI ⊆ CD. ■

Lemma 1 assumes that a time-varying bound on the deviation
between the nominal and disturbed backup flow, δmax(τ), can
be found. While problem-specific bounds can be obtained, we
utilize a generalization of the Gronwall-Bellman inequality
to obtain a bound for a wide class of nonlinear systems.

Lemma 2 (Theorem 2.5 in [26]). For systems (4) and (10),
let fcl be locally Lipschitz on X with Lipschitz constant Lcl

and dx be piecewise continuous in τ on [0, T ]. If ∥dx∥ ≤ ξ
for all dx and some ξ > 0, then for all τ ∈ [0, T ] one has∥∥∥ϕn

b(τ,x)− ϕd
b(τ,x)

∥∥∥ ≤ ξ

Lcl
(eLclτ − 1) ≜ δmax(τ).

Remark 1. Backup strategies often drive the system to an
equilibrium and thus may be (at least weakly) contracting.
When contraction bounds on the deviation between the dis-
turbed and nominal backup flow can be obtained, δmax(τ)
can be made less conservative, and it will converge to a near-
constant value as T increases. Details on such bounds can
be found in [28, Corollary 3.17]. A contraction bound is used
effectively in the spacecraft rotation example in Section IV-B.
For linear systems, flow deviation bounds can be even tighter.

Using the definition of CD and the corresponding robust
backup controller ub, we now examine the properties of CD.

Lemma 3. The set CD is controlled invariant, and the robust
backup controller ub renders CD forward invariant along (9),
such that

x ∈ CD =⇒ ϕd
b(ϑ,x) ∈ CD,∀ϑ ≥ 0. (14)



Proof. From the definition of CD and with Assumption 1

x ∈ CD =⇒ ϕd
b(τ,x) ∈ CB ⊆ CS,∀τ ≥ T. (15)

By definition, the flow is recursive in nature and thus for
any x ∈ Rn and τ, ϑ ≥ 0, ϕd

b(τ + ϑ,x) = ϕd
b(τ,ϕ

d
b(ϑ,x)).

Using (15) and the recursive property of the flow

x ∈ CD =⇒ ϕd
b(T,ϕ

d
b(ϑ,x)) ∈ CB,∀ϑ ≥ 0. (16)

From (15) and by definition (11) x ∈ CD =⇒ ϕd
b(τ,x) ∈

CS,∀τ ≥ 0. Using the recursive property once more

x ∈ CD =⇒ ϕd
b(τ,ϕ

d
b(ϑ,x))∈CS,∀τ ∈ [0, T ],∀ϑ≥ 0. (17)

Definition (11) with (16) and (17) completes the proof. ■

While the controlled invariance of CD has been established,
the conditions on u for forward invariance cannot yet be ob-
tained as CD itself is unknown. This motivates the following
theorems.

Theorem 2. For any x ∈ CI, there exists a controller u such
that ϕd(ϑ,x) ∈ CD ⊆ CS,∀ϑ ≥ 0.

Proof. By Lemma 1, x ∈ CI =⇒ x ∈ CD, and by Lemma 3,
ub ensures ϕd(ϑ,x) ∈ CD ⊆ CS, ∀ϑ ≥ 0. ■

We are now ready to establish the conditions that enable
a controller to ensure the robust safety of (9). From the
definition of CI we have

ḣ(ϕn
b(τ,x),u) ≥ −α(h(ϕn

b(τ,x))− ϵτ ),

ḣb(ϕ
n
b(T,x),u) ≥ −αb(hb(ϕ

n
b(T,x))− ϵb),

(18)

where by expanding the total derivatives for system (9) this
becomes, ∀τ ∈ [0, T ],

∇h(ϕn
b(τ,x))Φ

n
b(τ,x)ẋ

d ≥ −α(h(ϕn
b(τ,x))− ϵτ ),

∇hb(ϕ
n
b(T,x))Φ

n
b(T,x)ẋ

d ≥ −αb(hb(ϕ
n
b(T,x))− ϵb).

(19)

Here, ẋd ≜ f(x) + g(x)u + dx. Using this expansion, we
can show that a controller which realizes forward invariance
of CI keeps the disturbed system safe, and that conditions
for such a controller can be directly computed, despite the
unknown disturbance.

Theorem 3. If any controller u satisfies

∇h(ϕn
b(τ,x))Φ

n
b(τ,x)

(
f(x) + g(x)u

)
− η ≥

−α(h(ϕn
b(τ,x))− ϵτ ),

∇hb(ϕ
n
b(T,x))Φ

n
b(T,x)

(
f(x) + g(x)u

)
− ηb ≥

−αb(hb(ϕ
n
b(T,x))− ϵb),

(20)

with robustness terms defined by

η ≜ ξ ∥∇h(ϕn
b(τ,x))Φ

n
b(τ,x)∥ ,

ηb ≜ ξ ∥∇hb(ϕ
n
b(T,x))Φ

n
b(T,x)∥ ,

then x0 ∈ CI =⇒ ϕd(t,x0) ∈ CI ⊆ CD ⊆ CS, for all t > 0.

Proof. As done in [5], the robustness terms η and ηb upper-
bound the unknown dx term in (19). Thus the condition (20)

implies (19). From a direct application of Theorem 1 to sys-
tem (9), we obtain that (19) ensures ϕd(t,x0) ∈ CI, ∀t > 0
for any x0 ∈ CI. From Lemma 1, we have CI ⊆ CD. ■

Naturally, the original backup CBF constraints (6) are
recovered in the absence of disturbances (i.e., ξ = 0). As
the constraints in (20) are continuous in τ , the trajectory is
again discretized similar to [4, Thm. 3] and appropriately
tightened via a constant term ε∆ where

ε∆ ≥ ∆

2
Lh( sup

x∈CS

∥fcl(x)∥+ ξ). (21)

The result of Theorem 3 is now ready to be directly
utilized in a new point-wise optimal controller accounting
for disturbances. The Disturbance-Robust Backup CBF (DR-
bCBF) optimization problem is written as:

usafe = argmin
u∈U

1

2
∥up − u∥2 (DR-bCBF-QP)

s.t. ∇h(ϕn
b(τ,x))Φ

n
b(τ,x)

(
f(x) + g(x)u

)
− η ≥

− α(h(ϕn
b(τ,x))− ϵτ − ε∆),

∇hb(ϕ
n
b(T,x))Φ

n
b(T,x)

(
f(x) + g(x)u

)
− ηb ≥

− αb(hb(ϕ
n
b(T,x))− ϵb),

for all τ ∈ {0,∆, . . . , T}. As before, ∆ ∈ R>0 is a
discretization time step satisfying T/∆ ∈ N. Because ϵτ
and ϵb only depend on a priori known values and τ , they
can be pre-computed and reused each time (DR-bCBF-QP)
is solved. Furthermore, the robustness terms η and ηb depend
on values that must be computed for the standard backup set
method already, hence disturbance robustness adds negligible
computational cost.

Remark 2. From Theorem 2, CD is controlled invariant, how-
ever the controlled invariance of CI itself cannot be proven
without additional assumptions on ub and CB. Therefore,
the feasibility of the optimization problem (DR-bCBF-QP) is
not guaranteed. However, in the case that the optimization
problem becomes infeasible, the robust backup control law
ub can be used to stay in CD until the optimization problem
becomes feasible again.

IV. NUMERICAL EXAMPLES

In this section we demonstrate the effectiveness of the pro-
posed method in assuring safety under bounded disturbances
using two simulation examples. Code and videos are available
at: https://github.com/davidvwijk/DR-bCBF.

A. Double Integrator

Consider a simple example of a double integrator given by

ẋ =
[
x2, u

]T
+ dx, (22)

with a state vector x = [x1, x2]
T ∈ R2 where x1 is

the position and x2 is the velocity, and an acceleration
control variable u ∈ U = [−1, 1]. The safe set is defined as
CS ≜ {x ∈ R2 : −x1 ≥ 0}. The unknown additive process
disturbance is bounded with ∥dx∥ ≤ ξ ∈ R>0. In this

https://github.com/davidvwijk/DR-bCBF


Fig. 2. Phase space visualization of safety-critical control for a double inte-
grator system under bounded disturbances, using the proposed disturbance-
robust backup control barrier function approach. Nominal backup trajectories
in gray emanate from the disturbed trajectory (dotted black line) and the gray
circles centered on the nominal trajectories are Gronwall norm balls from
Lemma 2. The Gronwall norm ball at τ = T , colored in red, is always
contained in CB, as required by (12).

particular example, the unknown disturbance is constant, with
dx = ξ v

∥v∥ where v = [1, 1]T , and ξ = 0.08. The backup
control law ub(x) = −1 brings the system to the backup set
CB ≜ {x ∈ R2 : −x1 ≥ 0,−x2 ≥ 0} as long as ξ < 1. The
discretization time step for computing the nominal backup
flow is ∆ = 0.02 s. The primary control law is up = 1 which
drives the system to the right half-plane (unsafe region).

Using the proposed disturbance-robust backup CBF ap-
proach, the forward invariant set CI is computed for various
values of T between 0.5 s and 1.25 s, plotted on Figure 2
in pink. The backup set, CB, is plotted in blue and a robust
controlled invariant set CR is plotted in green. For this simple
linear system, such a set can be computed by analytically
solving for the flow and accounting for worst-case distur-
bances. The black dotted line represents the trajectory of
the disturbed system using the proposed controller, with an
integration horizon T = 1.25 s. Notably, safety is maintained
along this trajectory, as stated by Theorem 3.

The plots show that as the backup horizon T is increased,
the forward invariant set CI increases in size, up to a certain
point. Since the Gronwall bound grows exponentially with
time, the longer the backup horizon is, the larger the final
bound, δmax(T ), will be. If T is too large, the constraint
on the terminal point of the nominal backup trajectory will
dominate, and the set CI will begin to shrink. This therefore
introduces a trade-off as T cannot be made arbitrarily large
when using Lemma 2. Naturally, as the disturbance bound ξ
increases, the size of CI will shrink since the bound on the
backup flows is proportional to ξ.

B. Rigid Body Spacecraft Rotation

Consider next an example of a rigid body spacecraft with
a known inertia tensor in the body frame given by J , where

the dynamics of the angular velocities can be described by
Euler’s rotational equations of motion

ω̇ = J−1(−ω × Jω + u) + dx. (23)

Here, u ∈ U = [−1, 1]3 Nm is the control torque vector that
can be applied by the spacecraft to control the angular veloc-
ity and dx is an unknown but bounded additive disturbance
vector, such that ∥dx∥ ≤ ξ ∈ R>0. The states of interest are
the angular velocity vector elements in the body frame.

The safety objective is to ensure that the norm of the
angular velocity vector of the spacecraft does not exceed a
maximum value, to prevent damage to onboard sensors. The
safe set is therefore CS = {ω ∈ R3 : h(ω) ≥ 0} where
h(ω) = ω2

max − ∥ω∥2 ≥ 0 and ωmax ∈ R>0 represents the
maximum allowable angular velocity. The primary controller
is given by up(t) = sin([ t2 ,

t
2 − π

4 ,
t
4 + π

4 ]
T ). The robust

backup control law ub(ω) = −kbJω + ω × Jω renders
the backup set CB ≜ {ω ∈ R3 : hb(ω) = γ − 1

2ω
TJω ≥ 0}

robustly forward invariant for sufficiently large gain kb. CB
is a level set of the spacecraft’s rotational energy, defined
by the scalar γ. Any kb > (λmaxξ)/(

√
2γλmin) ensures

ḣb(ω,u) ≥ 0 at the boundary of the level set for (23), where
λmax and λmin are the maximum and minimum eigenvalues
of J , respectively. The proof is omitted for brevity.

It is straightforward to verify that the closed-loop nominal
backup dynamics are strongly contracting with a rate of
kb since fcl(ω) = −kbω. Because the log norm of the
closed-loop Jacobian (∂fcl/∂ω) is upper-bounded by −kb,
the disturbed and nominal backup flows can be bounded as∥∥∥ϕn

b(τ,ω)− ϕd
b(τ,ω)

∥∥∥ ≤ ξ

kb
(1− e−kbτ ), (24)

by [28, Corollary 3.17]. This yields tighter ϵτ and ϵb terms
than the general Gronwall bound.

For the simulations, ωmax = 1 rad/s, γ = 2 J, ξ =
0.1 rad/s2 and J is diagonal with elements [12, 12, 5] kgm2.
The discretization time step used for computing the nominal
backup flow is ∆ = 0.05 s and the integration horizon is
T = 1.75 s. The disturbance vector is time-varying, given by
dx(t) = ξ v(t)

∥v(t)∥ where v(t) = sin([ t2 + π
2 ,

t
2 ,

t
2 − π

2 ]
T ).

Figure 3 compares our disturbance-robust backup CBF
method using the contraction bounds in (24) with the standard
backup CBF approach. Our approach obeys the norm con-
straint on the angular velocity in the presence of unknown
time-varying disturbances, while the standard backup CBF
approach does not, violating safety multiple times.

V. CONCLUSIONS

In this article we presented a novel safety-critical control
framework to handle unknown bounded disturbances for a
broad class of nonlinear systems. We extended the method
of backup CBFs to handle such disturbances by providing
forward invariance conditions for a subset of a controlled
invariant set governed by the disturbed system. We proved
that enforcing these conditions guarantees safety for the
disturbed system, and we demonstrated the effectiveness of
the approach with two numerical simulation examples.
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Fig. 3. Simulation results for a rigid body spacecraft, comparing the proposed disturbance-robust backup CBF approach and the standard backup CBF
formulation. (Left) State-space visualization of angular velocity components showing the trajectory of the angular velocity vector over time. The objective
is to keep the trajectory within the red sphere (safe region). The standard approach violates safety due to the disturbance, while the proposed disturbance-
robust method does not. Magenta sections of the blue trajectory indicate that the primary control signal, up, has been modified to assure safety. Wire-frame
spheres represent the contraction norm balls along the nominal backup flow in cyan. (Right) Angular velocity norm over time for both approaches (top),
and commanded primary control and actual (safe) control signal over time for the robust approach (bottom).
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